近似数教案6篇
合理的教案有助于教师更好地激发学生的学习动力,我们要意识到教案能够提高课堂教学的效果,下面是范文社小编为您分享的近似数教案6篇,感谢您的参阅。
近似数教案篇1
教学内容:
课本第77页例8及练习十六第6题。 授课日期 __年__月_ 日 星期
教学目标:
1、通过具体的情景让学生理解近似数的含义,体会近似数在生活中的作用。
2、通过独立猜测、交流等活动让学生掌握一定猜测的方法,培养学生的数感和估计能力。
教学重、难点:
1、通过独立猜测、交流等活动让学生掌握一定猜测的方法。
2、培养学生的数感和估计能力。
教学准备:教学挂图。
教学过程:
一、准备练习
1、 接着数数。
1998、( )、( )、( )
9997、( )、( )、 ( )
497、( ) ( ) 、( )
2、按照要求排列下面各数。
1001 996 1008
( ) > ( ) > ( )
205 306 402
( )
复习旧知,为新知学习作好铺垫。
二、新课教学
1、组织理解近似数的含义。
出示例8的主题图。
聪聪去调查了育英小学的学生数,他写下了这样的一句话:“育英小学有1506人,约是1500人。”育英小学到底有1506人还是1500人呢?为什么?
组织学生进行讨论、交流。思考:后半句约1500人是什么意思?
小组汇报:
a、认为育英小学的认数是1506人,因为他告诉我们就是1506人,后半句他说的是约是1500人,是说他们学校的人数和1500人的差不多。
b、也认为育英小学有1506人,他说约有1500人是大概就是1500人的意思。
师小结:我们把1506这个很准确的数字就叫做“准确数”,而1500这个和1506差不多的`数就叫做“近似数”。(边说边板书)
引导学生明白近似数更容易记,因为它正好是正百数。
出示例8主题图比较一下1506和1500这两个数,体会一下准确数和近似数哪个数更容易记住
(2) 聪聪那天不仅调查了育英小学的人数,还调查了新长镇的人数是9992人,约是( )人,先独立填填,再和你的同桌交流交流。谁来说说你写出的近似数是多少?
个别汇报:
a、约是10000人,因为我觉得9992人接近10000人,
b、我写的是“约9990人”因为9992人和9990只相差2。
同学们你们同意哪位写的呢?为什么?
师生小结:我们用近似数就是为了让我们更容易记住,所以,一般我们都用整百、整千、整万数。
通过活动的学习,理解近似数的含义,感受到近似数的作用,同时掌握近似数的写法。
2、请你说说身边的近似数,找找生活中的近似数。按照教师的要求,先独立想想,再和小组的同学交流。
3、组织活动3——猜一猜。
(1)(练习十六第9题)
提出题中的要求。
请大家独立动脑筋想一想,再和同桌交流看你们手猜的一样吗?互相说说你们为什么要这样猜。
(2)组织进行集体交流。说一说你猜出来的结果是什么样的?你是怎么猜的?
及时肯定回答好的学生,并帮助学生总结应当怎样猜。
让学生将所准备的卡片,按照教师的要求摆一摆:将所准备的卡片组成三位数或四位数;读一读:同桌相互读摆出的数;
说一说:再互相说一说对方所摆事出的数的组成;
比一比:比较两个数的大小。
通过“说一说、猜一猜”活动让学生感受到近似数与生活的联系。
三、课外训练
1、组织数学游戏——猜价格/
(1)电视节目“幸运52”猜商品价格的游戏大家看过吗?
其实这样的游戏应用的也是数学知识。今天我们也来玩一玩这样的猜数游戏。
(2)游戏规则:老师给你一个提示,比如这个数几千几百的数,然后就开始猜,老师提示手中的数比你猜的数大还是小。同学们再根据这个提示继续猜直到猜对为止。
(3)进行第一轮猜数游戏。
此活动培养学生的思维能力和数感。
近似数教案篇2
设计说明
本课时主要学习将非整万、整亿数用“四舍五入”法求出近似数。学生在学习万以内数的认识时,已初步了解了近似数,生活中也经常遇到近似数。同时根据《数学课程标准》中关于学生观和学习方式的论述,在设计本课时的教学过程中突出了以下两个方面:
1.注重已有的生活经验。
对于学生来说,先前的经验是非常重要的,他们在日常生活中,在以往的学习中,已经形成了比较丰富的经验,遇到某些问题时,他们会从有关的知识经验出发,形成对问题的某种合乎逻辑的解释。如近似数的概念学生虽然没有接触过,但近似数在日常生活中是很常见的,通过学生对生活事例的调查和直观的描述,让学生进一步认识和理解近似数。
2.注重以学生为主体。
既然知识是个体主动建构的,不可能所有的知识都要通过教师的讲解传授给学生。因此,学生必须主动地参与到整个学习的过程中,要根据学生自己先前的经验来建构新知识。本课时在设计上更多地通过展示生活中的一些数学信息来激发学生的学习兴趣,让学生主动地投入到对近似数的认知中去,让学生经历探究求一个数的近似数的过程,理解并掌握求近似数的方法。
课前准备
教师准备ppt课件
学生准备收集有关近似数的数据
教学过程
⊙创设情境,导入新课
1.获取信息。
让学生观看一个短片(课件出示国庆60周年庆典片段),提问:这是什么场面?
生:国庆60周年庆典。
师:请同学们阅读资料,说一说从资料中你获取了哪些信息。(课件出示教材10页主题图的文字资料)
2.处理信息,建立数学模型。
观察这组信息中的数据,它们有什么特点?你们能不能试着将它们分分类?
(1)小组讨论。
(2)全班汇报,说明理由。
(学生分类的角度不同,但大部分学生会按是不是准确的数这一标准将这些数据分为两类:准确的数和大概的数)
设计意图:通过国庆庆典资料中的数据,让学生初步体会什么是近似数,什么是精确数。同时对学生了解近似数的特点也有一个潜移默化的作用。
⊙合作交流,探究新知
1.理解精确数、近似数的含义。
(1)介绍精确数和近似数。
说明:在人类实践活动中,经常遇到各种数据。有些数据与实际完全相符,这样的数叫精确数。例如:四(1)班有40名同学,40就是精确数;而有些数据与实际大体符合,或者说比较接近实际数据,这样的.数叫近似数。例如:课桌宽约50厘米,50就是近似数。
(2)分辨精确数和近似数。
师:说一说国庆庆典数据中,哪些是精确数?哪些是近似数?为什么?
“60周年”中的“60”是精确数,“60响礼炮声”中的“60”是精确数,“行进了169步”中的“169”是精确数,“169年”中的“169”是精确数,“近66分”中的“66”是近似数,“有56个方队和梯队”中的“56”是精确数,“约20万人”中的“20”是近似数,“近2万平方米”中的“2”是近似数)
2.了解近似数的作用。
(1)教师质疑,激发思考。
为什么这些情况要用近似数来描述呢?(课件出示近似数)像接受检阅的人数和巨幅国画《江山如此多娇》的画布总面积,它们为什么不用精确数来表示呢?
(2)学生探讨。
(3)指名交流想法。
教师小结:有些情况很难、也没有必要用准确的数据来描述它,只要知道一定的范围就足够了,这个时候就需要用到近似数。这说明近似数在生活中的应用还是相当广泛的。
3.发现生活中的近似数。
(1)请同桌说说自己收集的数据中的近似数。
(2)请同学找一找日常生活中的近似数。
(学生纷纷发言,表述自己的看法)
近似数教案篇3
教学目标:
1、在测量情境中体会用近似数表示长度的必然性,能用近似数表示生活中的数量.
2、能根据实际问题的需要四舍五入取近似值.
3、对于由四舍五入法得到的近似数,能说出它精确到哪一位,它们有几个有效数字,是什么.
教学重点:
按要求取近似值,能说出它精确到哪一位,有几个有效数字,按精确到哪一位的要求,四舍五入取近似值.
教学难点:
指出较大数位的.近似数的有效数字.
教学过程:
一、创设情景引入
出示投影:78页彩图,学生组内合作讨论、交流解决问题.
二、新课:
(一)通过学生的活动,加深对近似数的理解,并讲解例题1、2
(二)练习:
1、判断下列各数,哪些是准确数,哪些是近似数
(1)某歌星在体育馆举办音乐会,大约有一万二千人参加;()
(2)检查一双没洗过的手,发现带有各种细菌80000万个;()
(3)张明家里养了5只鸡;()
(4)1990年人口普查,我国的人口总数为11.6亿;()
(5)小王身高为1.53米;(6)月球与地球相距约为38万千米;()
(7)圆周率π取3.14156.()
2.小明量得一条线长为3.652米,按下列要求取这个数的近似数:
(1)四舍五入到十分位___________;(2)四舍五入到百分位_________;
(3)四舍五入到个位____________.
一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.
在上题中,小明得到的近似数分别精确到那一位.
3、下面由四舍五入得到的近似数各精确到那一位
0.320__________;123.3__________;5.60____________;204__________;
5.93万____________;1.6×104_____________.
4.小亮量得某人三级跳的距离是12.9546米,按下列要求取这个数的近似数:
(1)精确到0.1____________;(2)精确到0.01_________;(3)精确到0.001_______.
5.把数73600精确到千位得到的近似数是_______________
精确到万位得到的近似数是_________________
6.近似数3.70所表示的精确值a的范围是()
(a)3.695≤a<3.705(b)3.6≤a<3.80
(c)3.695<a≤3.705(d)3.700<a≤3.705
7.下列数中,不能由四舍五入得到近似数38.5的数是()
(a)38.53(b)38.56001(c)38.549(d)38.5099
分析近似数8与8.0的差别
(三)讲解精确度、有效数字的概念:
对于一个近似数从____边第____个不是____的数字起,到________的数位止,所有的数字都叫做这个数的有效数字.
如:1、0.03296精确到万分位是_______,有____个有效数字,它们是_________________
2、数0.8050精确到_______位,有_____个有效数字,是_______________
3、数4.8×105精确到_______位,有_____个有效数字,是_______________
4、数5.31万精确到_______位,有_____个有效数字,是_______________
四、讲解例题,解后反思,加深对相关知识的理解.
练习:一箱雪梨的质量为20.95㎏,按下面的要求分别取值:
(1)精确到10㎏是______㎏,有______个有效数字,它们是________
(2)精确到1㎏是______㎏,有______个有效数字,它们是________
(3)精确到0.1㎏是______㎏,有______个有效数字,它们是______
五、小结:什么是有效数字?按精确到哪一位,求近似值时要注意什么?
六、作业:p83习题1、2
近似数教案篇4
教学内容:
义务教育课程标准实验教科书青岛版第71页《求小数的近似数》。
教学目标:
1.借助已有经验,使学生掌握求一个小数近似数的方法,能够正确地求一个小数的近似数。
2.在解决问题的过程中,培养学生自主学习的能力,初步学习用猜想、比较、归纳等数学方法学习数学知识。
3.通过独立思考,培养学生认真审题、解题的良好学习习惯。
教学过程:
一、创设情景
1.谈话:同学们,本单元前面几个信息窗我们学习了形形色色的鸟蛋和龟蛋带给我们的数学知识。本节课我们继续来学习本单元最后一个信息窗绿毛龟蛋带给我们的数学知识。
出示情境图,仔细观察画面,你知道了什么?你又能提出哪些数学问题?
学生合作交流。
2.谈话:这节课重点解决他们说的结果为什么不一样和绿毛龟蛋的宽径约是多少这两个问题。其他问题放在问题口袋里以后解决,可以吗?
[设计意图]激发学生的学习愿望和参与动机是引导学生主动学习的前提,通过清晰生动的情境图中出现的两位同学不同的测量结果让学生观察讨论,学生意见不一,于是需要寻找正确的判断方法,由此激起学生探寻新知的强烈愿望。
二、探究新知
1.学生独立思考他们说的结果为什么不一样?这一问题。
谈话:观察两位同学说的结果,你能发现什么?
让学生观察,引导学生发现:小华读出的结果是一个一位小数,小明读出的结果是一个整数。
谈话:对,求3.94的近似数,根据不同的要求,既可以保留一位小数,也可以保留整数。请同学们选择一种情况,根据我们求整数的近似数的方法,研究一下怎样求一个小数的近似数。
学生独立研究后,再在小组内交流。
谈话:哪位同学愿意说说你是怎样求3.94的近似数的?把你的方法向大家介绍一下。
谈话:你的方法很正确,还有哪位同学与他求得的近似数不同?
谈话:你的方法也很正确。因此,我们在求一个小数的近似数时,依然运用了四舍五入法,关键是看精确到哪一位。
2.学生独立思考绿毛龟蛋的宽径约是多少?这一问题
学生独立思考后,引导学生讨论什么时候小数的近似数的2,什么时候小数的近似数的2.0。
讨论得出:求一个小数的近似数时,保留小数的数位不同,精确程度也不同。
[设计意图]这一环节教学时让学生自己去观察,在观察中探究新知,在交流中归纳新知,把学习的主动权交给学生,在观察讨论过程中教谈话为学生创设自由选择的空间,让学生体会自由选择的轻松和快乐。
三、巩固应用
1.黄河的流域面积是75.14万平方千米。(保留一位小数)
2.把1.463保留整数、把1.463保留一位小数和把1.463保留两位小数这三种说法的结果是否是一样的?
3.小华的体重保留整数是45千克,他的体重可能是多少千克?
[设计意图]练习中让学生交流不同的思考方法,鼓励学生思维的创新,方法的简洁,但也照顾学生不同的认知水平,尊重学生的学习成果。
四、感悟收获
谈话:今天大家学得愉快吗?你们最大的收获是什么?
(学生自由说说说本课的收获及体验)
课后反思:
教师是教学的组织者和引导者,而不仅仅是解题的指导者。本节的教学我通过几个问题,几句话做适当的引导,而留给学生大量的时间让他们去观察,去思考,去交流,在观察中探究新知,在交流中归纳新知,把学习的主动权交给学生。在学习讨论的过程中,教师为学生创设自由选择的空间,引导学生敞开思维,多角度探索,实现高效率学习。
近似数教案篇5
教学内容
课本73页例1
教学目标
1、使学生掌握求一个小数的近似数的方法,能正确地安需要用“四舍五入法”保留一定小数的位数,理解保留小数位数越多精确程度越高。
2、通过旧知迁移新知的方法,让学生掌握知识。
3、培养学生的类推能力,增进学生对数学的理解和应用数学的信心。
教学重难点
求一个小数的近似数的方法
理解保留小数位数越多,精确的程度越高。
教学过程
一、复习
1、把下面各数省略万位后面的尾数求出它们的近似数。
734562 38460 50074 10274
让一位学生说出求近似数的方法。
2、下面的空格里可以填哪些数字。
32()546≈ 47()03≈
师:这是我们学过的求一个整数的近似数,那么求一个小数的近似数不知道同学们有没有信心掌握好呢?今天我们就来学习求一个小数的近似数。板书课题:求一个小数的近似数
二、导入新课
1、课件显示例1图。
他们是怎样得出豆豆身高的近似数的?
(1)保留两位小数
师板书:0.984≈0.98保留两位小数
用什么方法?(四舍五入法)根据学生回答师板书:四舍五入
引导学生说出:如果保留两位小数就要把第三位数省略,因为第三位小数小于5,所以舍去。
(2)保留一位小数
师板书:0.984≈
让学生独立完成,指名几位不同做法的学生上黑板写:0.984≈0.9,0.984≈1,0.984≈1.0.学生通过观察比较发现:在表示近似数时,小数末尾的0不能去掉。
接着让做对的同学谈自己的想法:保留一位小数,就看第二位小数,第二位小数上的数字8大于5,向前一位进一,末尾的0不能去掉。
(3)保留整数。
师板书:0.984≈
学生独立完成,集体订正,说出想法。
小结:求近似数时,保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位......
三、巩固练习
1、课本74页做一做。
2、课件显示填空题。
3、课本练习十二第一题。
4、课件显示判断题。
四、总结
这节课你有什么收获?
五、作业
课本练习十二第2、5、6题。
课后反思:
在上本节课之前,已经观看了几次本班学生的学习过程,对学生们大概有所了解,发现个别学生的纪律稍有点散漫。为了使全班同学们能够进入一个好的积极的学习状态,我并不急于先上课,而是把那些慢悠悠的,表现不佳的同学的积极性做了调动,同学们的上课精神开始集中了,但是已经占用了上课的三分钟时间。
求一个小数的近似数是在学生掌握了求整数的近似数的基础上进行的,其方法基本相同。因此我设计了求整数的'近似数的复习题并让学生说出自己的想法,为学习新知做好铺垫。在探求新知部分同学们掌握较好,但是因为时间关系,原先设计的练习题未能全部完成,有些遗憾。
纵观整堂课,发现仍然存在一些有待改进的地方。
1、授课语言不够生动灵活,过于单调生硬,未能更好地激发学生的学习兴趣,学生的学习热情还不够高。
2、时间安排不够合理,造成提供学生自我展现的机会较少,未能达到充分锻炼学生表达能力的效果,造成有个别学生对求一个小数的近似数的方法理解得不够深刻。
3、课前准备不够十分充足,造成对时间分配地把握不够准确,而且练习量相对少了一些,未能更好的巩固本节课的教学知识。
上好一节不容易,不但需要教师有深厚的理论功底,而且还得掌握有效的教学方法与技巧。
近似数教案篇6
教学目标
(一)能正确地比较亿以内数的大小。
(二)能把整万的数改写成用万作单位的数。
(三)能正确地写出省略万后面尾数的近似数。
(四)培养学生比较、分析的思维能力,养成良好的学习习惯。
教学重点和难点
重点:亿以内的数位顺序。
难点:数位与位数的区别,省略万后面的尾数求近似数的方法。
教具和学具
投影片。
教学过程设计
(一)复习准备
在下面○里填上>、<或=,再说一说你是怎样比较的?
999○1010 601○564 687○678
提问:
1.第一组两个数你是怎样比较的?
(三位数与四位数比,四位数一定比三位数大,因为三位数比一千小,四位数大于或等于一千。)
2.第二、三组数都是三位数,你是怎样比较的?
(两个三位数比较,百位上数大的那个数就大;百位上相同,十位上大的那个数就大。)
(二)学习新课
教师谈话:我们已经学过万以内数的比较大小,今天我们要学习的第一个内容,是亿以内数的比较大小。(板书课题:比较数的大小)
1.出示例5。
比较下面每组中两个数的大小:
(1)99864和101010。
提问:
①两个数各是几位数?
②五位数最高位是什么位?六位数最高位是什么位?
9万多与10万多来比较,谁大谁小?
(10万多比9万多大。)
所以99864<101010。(板书)
由此来看,五位数与六位数比较,谁比谁大?
(六位数比五位数大。)
③同学们推想一下,七位数与六位数比较呢?八位数与七位数比较呢?那么如果两个数的位数不同,怎样比较大小呢?
(如果两个数的位数不同,位数多的那个数大,七位数比六位数大,八位数比七位数大。)
出示第二组数:(2)356000和360000。
提问:
①这两个数各是几位数?
②这两个数都是六位数,位数相同的两个数怎样比较大小呢?先比较哪位上的数?
③两个数左起第一位十万位上都是3,怎么比较?
(两个数左起第一位十万位上都是3,看左起第二位,第一个数左起第二位万位上的5比第二个数万位上的 6小,所以356000<360000。)
教师把第一个数356000的万位改成6,即366000和360000。
④两个数左起第一位十万位上都是3,万位上都是6,怎么比较呢?
(两个数左起第一位十万位上都是3,第二位万位上都是6,就要看第三位。第一个数第三位千位上是6,第二个数千位上是0,所以366000>360000。)
启发学生逐步总结出完整的比较数的大小的方法。
提问:
①比较两个数的大小有几种情况?位数不同怎么比?
②如果位数相同怎么比?先要从哪一位比?如果左起第一位上的数相同,怎么比呢?
指导学生阅读课本中关于比较两数大小方法的结语,并提问学生结语的最后为什么有省略号“……”,表示什么意思?举例说明。
教师说明:“位数”是指一个数用几个数字写出来的(最左端的数字不能是0),有几个数字就是几位数。如99864是五位数,101010是六位数。“左起第一位”是数位,数位是指一个数中的数字所占的位置。如 99864左起第一位是“9”,“9”是在万位上,101010左起第一位是“1”,“1”在十万位上。“数位”与“位数”是不一样的。
练一练
(1)比较每组中两个数的大小,说说是怎么比的?
70080○70101 98965○100000
(2)按照从小到大的顺序排列下面各数。
40400 400400 44000 50004
指导学生做第(2)题时,先比较位数的多少,再把位数相同的几个数进行比较,也可以把这四个数排成一竖行,相同数位对齐。如:
可以看出:400400最大,40400最小。再把它们从小到大编成序号,按序号进行排列:40400<4400<50004<400400就不容易错。
2.教学把整万的数改写成用“万”作单位的数。
出示50000,让学生读数。
教师指出:这是一个整万的数。像这样整万的数,写成用“万”作单位的数比较简便。
提问:万位在右起第几位?整万的数万位后面有几个0?
把整万的数改写成用“万”作单位的.数,只要把后面的四个0去掉,加上一个万字就行了。例如 50000写成 5万,或 50000=5万。又如 1800000写成 180万,或 1800000=180万。
练一练
把下面的数改写成用“万”作单位的数。
(1)250000
(2)3200000
(3)1994年我国共生产自行车40450000辆。
其中第(3)题强调单位名称,即4045万辆。
3.教学求近似数。
教师谈话:我们学过用四舍五入法求一个数的近似数,请同学们把下面各数千后面的尾数省略,求出它的近似数。
4926 9375
提问:省略千后面的尾数,根据哪一位上的数进行四舍五入?(根据百位上的数进行四舍五入。)
教师叙述:比万大的数,我们也可以用同样的方法来求它的近似数,这就是我们今天要学习的第二个内容。(板书课题:求近似数)
出示例6:把下面各数万位后面的尾数省略,求出它们的近似数。
(1)84380 (2)726310
出示第(1)题。提问:
(1)省略千后面的尾数时,是根据百位上的数进行四舍五入的,省略万后面的数,要根据哪一位上的数进行四舍五入?
根据学生的回答,教师强调,只要根据尾数的最高位,不要管尾数的后几位是多少。教师把千位上的4用方框框起来,即8(4)380。
(2)千位上的数不满5,怎么办?
根据学生的回答,把万后面的尾数舍去。教师板书:8(4)380≈8万。
(3)为什么中间用约等于符号连接起来,而不用等号?为什么整万的数用万作单位可以用等号连接起来?
出示第(2)题。
由学生说一说,根据哪一位上的数进行四舍五入?千位上的数比5大,该怎么办?教师板书:72(6)310≈73万。
练一练
把下面各数万位后面的尾数省略,求出近似数。
(1)63599 (2)709327
(3)1994年我国大学毕业生有637000人。
其中第(3)题要强调写单位名称,即637000≈64万人。
(三)巩固反馈
1.总结性提问:
(1)今天我们学习了哪些内容?
(2)怎样比较两个整数的大小?
(3)怎样把整万的数改写成以万作单位的数?
(4)怎样省略万后面的尾数,求出它的近似数?
2.发展性练习。
指导学生做练习三的第5题。
第(1)题指导性提问:
(1)49999前面一个数是多少?把它写出来。
(2)49999后面一个数是多少?把它写出来。
第(2)题指导性提问:
(1)最小的一位数是几?最大的一位数是几?
(2)最小的两位数是几?最大的两位数是几?
(3)最小的三位数是几?最大的三位数是几?
请独立填写练习三第5题第(2)题。
3.思考性练习。
下面的□里可以填哪些数字?
19□785≈20万 60□907≈60万
9□8765≈1000000 9□4765≈900000
先出示第一横排两道题,相邻两位同学讨论怎样填,然后全班交流。同学们可能填不全,最后由老师小结:第一道题,19万多的近似数是20万,说明千位上的数是5或比5大的数,方框里可填9,8,7,6,5;第二道题,60万多的数的近似数是60万,说明千位上的数是比5小的数,方框里可填0,1,2,3,4。第二横排则由学生独立来填。
4.课后练习:
练习三第1,3,4题。
课堂教学设计说明
本节课是在学生基本上掌握了亿以内数的读写方法以后,学习比较两个数的大小,把整万的数改写成以万作单位的数,用四舍五入法求近似数。虽然内容不十分集中,但与过去学过的旧知识联系紧密。因此,教学过程的设计,采用帮助学生回忆有关的旧知识,引导学生探索出新方法。
本节课分三个层次,分两段提出课题。
第一层次是比较两个数的大小。由复习万以内数比较大小,引伸到比较亿以内两个整数的大小。分成位数不同和位数相同的两种情况,引导学生总结出比较两个整数大小的方法。
第二个层次是学习把整万的数改写成以万作单位的数。
第三个层次是学习求近似数,由复习省略千后面的尾数求出近似数,类推到省略万后面的尾数,求出近似数,归纳为根据尾数的最高位,进行四舍五入。这样引导,有利于培养学生的归纳推理能力。
根据本节课的内容,教学中采用边讲边练的形式,对课本中的练习进行适当地指导。最后的思考性练习对本节课所学的求近似数知识,起到进一步巩固和提高的作用。
板书设计
比较数的大小 求近似数
复习:
999○1010
601○564
687○678
4926≈5千
9375≈9千
例5 比较下面每组中两个数的大小。
99864和101010 356000和360000
99864<101010 356000<360000
50000=5万 1800000=180万
例6 把下面各数万后面的尾数省略,求出它的近似数。
(1)84380 (2)726310
8(4)380≈81万
72(6)310≈73万