初中数学七年级下教案7篇

时间:2024-07-01 17:02:19 分类:备课教案

教案的编写需要结合教学进度和学生的实际接受能力来进行调整,合适的教案有助于教师更好地应对课堂挑战,以下是范文社小编精心为您推荐的初中数学七年级下教案7篇,供大家参考。

初中数学七年级下教案7篇

初中数学七年级下教案篇1

一、教学目标

?知识与技能】

了解数轴的概念,能用数轴上的点准确地表示有理数。

?过程与方法】

通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

?情感、态度与价值观】

在数与形结合的.过程中,体会数学学习的乐趣。

二、教学重难点

?教学重点】

数轴的三要素,用数轴上的点表示有理数。

?教学难点】

数形结合的思想方法。

三、教学过程

(一)引入新课

提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。

(二)探索新知

学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:

提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?

学生活动:画图表示后提问。

提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。

教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。

提问3:你是如何理解数轴三要素的?

师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。

(三)课堂练习

如图,写出数轴上点a,b,c,d,e表示的数。

(四)小结作业

提问:今天有什么收获?

引导学生回顾:数轴的三要素,用数轴表示数。

课后作业:

课后练习题第二题;思考:到原点距离相等的两个点有什么特点?

初中数学七年级下教案篇2

一、教学目标

1、知识目标:掌握数轴三要素,会画数轴。

2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;

3、情感目标:向学生渗透数形结合的思想。

二、教学重难点

教学重点:数轴的三要素和用数轴上的点表示有理数。

教学难点:有理数与数轴上点的对应关系。

三、教法

主要采用启发式教学,引导学生自主探索去观察、比较、交流。

四、教学过程

(一)创设情境激活思维

1.学生观看钟祥二中相关背景视频

意图:吸引学生注意力,激发学生自豪感。

2.联系实际,提出问题。

问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

师生活动:学生思考解决问题的方法,学生代表画图演示。

学生画图后提问:

1.马路用什么几何图形代表?(直线)

2.文中相关地点用什么代表?(直线上的点)

3.学校大门起什么作用?(基准点、参照物)

4.你是如何确定问题中各地点的位置的?(方向和距离)

设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。

问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?

师生活动:

学生思考后回答解决方法,学生代表画图。

学生画图后提问:

1.0代表什么?

2.数的符号的实际意义是什么?

3.-75表示什么?100表示什么?

设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。

问题3:生活中常见的温度计,你能描述一下它的结构吗?

设计意图:借助生活中的常用工具,说明正数和负数的作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。

问题4:你能说说上述2个实例的共同点吗?

设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。

(二)自主学习探究新知

学生活动:带着以下问题自学课本第8页:

1.什么样的直线叫数轴?它具备什么条件。

2.如何画数轴?

3.根据上述实例的经验,“原点”起什么作用?

4.你是怎么理解“选取适当的长度为单位长度”的?

师生活动:

学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。

设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的`定义。

至此,学生已会画数轴,师生共同归纳总结(板书)

①数轴的定义。

②数轴三要素。

练习:(媒体展示)

1.判断下列图形是否是数轴。

2.口答:数轴上各点表示的数。

3.在数轴上描出下列各点:1.5,-2,-2.5,2,2.5,0,-1.5。

(三)小组合作交流展示

问题:观察数轴上的点,你有什么发现?

数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示-2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和-a的点进行同样的讨论。

设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的抽象概括能力。

(四)归纳总结反思提高

师生共同回顾本节课所学主要内容,回答以下问题:

1.什么是数轴?

2.数轴的“三要素”各指什么?

3.数轴的画法。

设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。

(五)目标检测设计

1.下列命题正确的是()

a.数轴上的点都表示整数。

b.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

c.数轴包括原点与正方向两个要素。

d.数轴上的点只能表示正数和零。

2.画数轴,在数轴上标出-5和+5之间的所有整数,列举到原点的距离小于3的所有整数。

3.画数轴,表示下列有理数数的点中,观察数轴,在原点左边的点有xxxxxxx个。4.在数轴上点a表示-4,如果把原点o向负方向移动1.5个单位,那么在新数轴上点a表示的数是xxxxxxxx。

五、板书

1.数轴的定义。

2.数轴的三要素(图)。

3.数轴的画法。

4.性质。

六、课后反思

附:活动单

活动一:画一画

钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

思考:如何简明地用数表示这些地理位置与学校大门的相对位置关系?

活动二:读一读

带着以下问题阅读教科书p8页:

1.什么样的直线叫数轴?

定义:规定了xxxxxxxxx、xxxxxxxx、xxxxxxxxx的直线叫数轴。

数轴的三要素:xxxxxxxxx、xxxxxxxxx、xxxxxxxxxx。

2.画数轴的步骤是什么?

3.“原点”起什么作用?xxxxxxxxxx

4.你是怎么理解“选取适当的长度为单位长度”的?

练习:

1.画一条数轴

2.在你画好的数轴上表示下列有理数:1.5,-2,-2.5,2,2.5,0,-1.5

活动三:议一议

小组讨论:观察你所画的数轴上的点,你有什么发现?

归纳:一般地,设a是一个正数,则数轴上表示数a在原点的xxxx边,与原点的距离是xxxx个单位长度;表示数-a的点在原点的xxxx边,与原点的距离是xxxx个单位长度.

练习:

1.数轴上表示-3的点在原点的xxxxxxx侧,距原点的距离是xxxxxx;表示6的点在原点的xxxxxx侧,距原点的距离是xxxxxx;两点之间的距离为xxxxxxx个单位长度。

2.距离原点距离为5个单位的点表示的数是xxxxxxxx。

3.在数轴上,把表示3的点沿着数轴负方向移动5个单位长度,到达点b,则点b表示的数是xxxxxxxx。

附:目标检测

1.下列命题正确的是()

a.数轴上的点都表示整数。

b.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

c.数轴包括原点与正方向两个要素。

d.数轴上的点只能表示正数和零。

2.画数轴,在数轴上标出-5和+5之间的所有整数.列举到原点的距离小于3的所有整数。

3.画数轴,观察数轴,在原点左边的点有xxxxxxx个。

4.在数轴上点a表示-4,如果把原点o向负方向移动1.5个单位,那么在新数轴上点a表示的数是xxxxxxxx。

初中数学七年级下教案篇3

问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。也就是只要将x=1,2,3,4,……代人方程(2)的两边,看哪个数能使两边的值相等,这个数就是这个方程的解。

把x=3代人方程(2),左边=13+3=16,右边=(45+3)=48=16,

因为左边=右边,所以x=3就是这个方程的解。

这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?

同学们动手试一试,大家发现了什么问题?

同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的.方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

这正是我们本章要解决的问题。

三、巩固练习

1、教科书第3页练习1、2。

2、补充练习:检验下列各括号内的数是不是它前面方程的解。

(1)x-3(x+2)=6+x(x=3,x=-4)

(2)2y(y-1)=3(y=-1,y=2)

(3)5(x-1)(x-2)=0(x=0,x=1,x=2)

四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

五、作业。教科书第3页,习题6。1第1、3题。

解一元一次方程

1、方程的简单变形

教学目的

通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。

重点、难点

1、重点:方程的两种变形。

2、难点:由具体实例抽象出方程的两种变形。

教学过程

一、引入

上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。

二、新授

让我们先做个实验,拿出预先准备好的天平和若干砝码。

测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。

如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。

如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?

让同学们观察图6.2.1的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。

初中数学七年级下教案篇4

教学目标:

1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

3, 体验分类是数学上的常用处理问题的方法。

教学难点:

正确理解分类的标准和按照一定的标准进行分类

知识重点:

正确理解有理数的概念

教学过程:

探索新知

在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

问题1:观察黑板上的9个数,并给它们进行分类.

学生思考讨论和交流分类的情况.

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

例如,

对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)

通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,”。

按照书本的说法,得出“整数”“分数”和“有理数”的概念.

看书了解有理数名称的由来.

“统称”是指“合起来总的名称”的意思.

试一试:

按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与。

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

练一练

1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

2,教科书第10页练习.

此练习中出现了集合的概念,可向学生作如下的说明.

把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号:。

思考:

问题1:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

创新探究

问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等。

小结与作业

到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

初中数学七年级下教案篇5

教学目标:

1.理解有理数的意义.

2.能把给出的有理数按要求分类.

3.了解0在有理数分类中的作用.

教学重点:

会把所给的各数填入它所在的数集图里.

教学难点:

掌握有理数的两种分类.

教与学互动设计:

(一)创设情境,导入新课

讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.

(二)合作交流,解读探究

3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…

议一议你能说说这些数的.特点吗?

学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.

说明我们把所有的这些数统称为有理数.

试一试你能对以上各种类型的数作出一张分类表吗?

有理数

做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.

有理数

数的集合

把所有正数组成的集合,叫做正数集合.

试一试试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.

(三)应用迁移,巩固提高

?例1】把下列各数填入相应的集合内:

,3.1416,0,20__,- ,-0.23456,10%,10.1,0.67,-89

?例2】以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?

有理数有理数

(四)总结反思,拓展升华

提问:今天你获得了哪些知识?

由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.

下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?

(五)课堂跟踪反馈

夯实基??

1.把下列各数填入相应的大括号内:

-7,0.125, ,-3 ,3,0,50%,-0.3

(1)整数集合{};

(2)分数集合{};

(3)负分数集合{ };

(4)非负数集合{ };

(5)有理数集合{ }.

2.下列说法中正确的是()

a.整数就是自然数

b. 0不是自然数

c.正数和负数统称为有理数

d. 0是整数,而不是正数

提升能力

3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?

初中数学七年级下教案篇6

教学目标

1.通过具体的活动,认识方向与距离对确定位置的作用。

2.能根据任意方向和距离确定物体的位置。

3.发展学生的空间观念。

教学重点

用方向和距离描述物体的位置。

教学难点

对任意角度具体方向的准确描述。

教学过程

一、创设情境 生成问题

春季是运动的最好时节,我们同学们都很爱好运动,不久我校就会举行一次越野比赛,现在老师将越野图展现给大家。

二、探索交流 解决问题

1.出示越野图的起点和终点位置。

2.如果你是一名运动员,你将从起点向什么方向行进?(方向标)加方向标有什么好处?为什么方向标画在起点的位置?(以起点为观测点)

3.自主探究,小组讨论,合作交流

例1的学习是让学生明确可以根据方向和距离两个条件确定物体的位置。教学时,可以与主题图的教学结合进行,通过情境使学生明确需要方向和距离两个条件才能确定物体的位置。活动中确定方向的具体方法可以让学生小组合作进行探索。

知道在出发点的东北方向就可以出发吗?如果这样会发生什么情况?这样确定方向准确吗?怎么样走会更加的准确?

准确的可以说是东偏北30°,那可以用北偏东60°这样表示吗?在说具体位置时,一般先说与物体所在方向离得较近(夹角较小)的'方向。——靠近哪个方向就把那个方向放在前面。

(距离 1千米)如果没有距离又会怎样?

1号点在起点的东偏北30°的方向上,距离是 1千米。你学会表示了吗?

三、巩固练习 内化提高

做一做呈现了小明家附近几处建筑物的位置示意图,通过方向与距离的确定,使学生进一步明确确定方向的具体方法。

练习三第1、2题是相应的在地图上确定方向的练习。

四、回顾整理 反思提升

我们可以根据题目提供的方向和距离这两个条件来确定物体的位置。首先要确定方向标。

初中数学七年级下教案篇7

一元一次不等式组

教学目标

1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;

2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;

3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的'价值。

教学难点

正确分析实际问题中的不等关系,列出不等式组。

知识重点

建立不等式组解实际问题的数学模型。

探究实际问题

出示教科书第145页例2(略)

问:(1)你是怎样理解“不能完成任务”的数量含义的?

(2)你是怎样理解“提前完成任务”的数量含义的?

(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?

师生一起讨论解决例2.

归纳小结

1、教科书146页“归纳”(略).

2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?

在讨论或议论的基础上老师揭示:

步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。

最新文章

相关内容

分类

关闭